Понятия со словосочетанием «остроугольный треугольник»
Связанные понятия
Описанный многоугольник, известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это окружность, которая касательна каждой стороны многоугольника. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
Вписанная в треугольник окружность — окружность внутри треугольника, касающаяся всех его сторон; наибольшая окружность, которая может находиться внутри треугольника. Центр этой окружности является точкой пересечения биссектрис треугольника и называется инцентром треугольника.
Описанное коническое сечение или описанная коника для треугольника — это коническое сечение, проходящее через три вершины треугольника, а вписанное коническое сечение или вписанная коника — это вписанное в треугольник коническое сечение, т.е. касающееся сторон треугольника (возможно, не самих сторон, а их продолжений) Пусть даны три различные точки A,B,C, не лежащие на одной прямой, и пусть ΔABC — треугольник, имеющий эти точки в качестве вершин. Обычно считается, что буква, например A, обозначает...
Растянутый многоугольник серединных точек вписанного многоугольника P — это другой вписанный в ту же самую окружность многоугольник, вершины которого являются серединами дуг между вершинами многоугольника P. Многоугольник может быть получен из серединного многоугольника (многоугольника, вершины которого лежат в серединах сторон), если провести радиусы из центра окружности через вершины серединного многоугольника.
Серединный многоугольник (многоугольник Казнера) — многоугольник, вершинами которого являются середины рёбер исходного многоугольника.
Существует единственное аффинное преобразование, которое переводит правильный треугольник в данный треугольник.
Подробнее: Эллипс Штейнера
Вневпи́санная окружность треугольника — окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон. У любого треугольника существует три вневписанных окружности (в отличие от единственной вписанной).
Середина отрезка — точка на заданном отрезке, находящаяся на равном расстоянии от обоих концов данного отрезка. Является центром масс как всего отрезка, так и его конечных точек.
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Правильный (или равносторонний) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
Лемма о трезубце или теорема трилистника, или лемма Мансиона (жарг. лемма о куриной лапке) — теорема в геометрии треугольника.
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.
Подробнее: Изотоксальная фигура
Теорема Харкорта — это формула в геометрии для площади треугольника как функции длин сторон и расстояний от вершин треугольника до произвольной прямой, касательной к вписанной в треугольник окружности.
Гипе́рбола Ки́перта — гипербола, определяемая по данному треугольнику. Если последний представляет собой треугольник общего положения, то эта гипербола является единственным коническим сечением, проходящим через его вершины, ортоцентр и центроид.
Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.
Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.
Вписанно-описанный четырёхугольник — это выпуклый четырёхугольник, который имеет как вписанную окружность, так и описанную окружность. Из определения следует, что вписанно-описанные четырёхугольники имеют все свойства как описанных четырёхугольников, так и вписанных четырёхугольников. Другие названия этих четырёхугольников: хордо-касающийся четырёхугольник и бицентрический четырёхугольник. Их также называют двух-окружностными четырёхугольниками.
Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.
В геометрии конциклическими (или гомоциклическими) точками называют точки, находящиеся на одной окружности. Три точки на плоскости, не лежащие на одной прямой, всегда лежат на одной окружности, поэтому иногда термин «конциклические» прилагают только к наборам из 4 или более точек.
Подробнее: Конциклические точки
В геометрии пространственный многоугольник — это многоугольник, вершины которого не компланарны. Пространственные многоугольники должны иметь по меньшей мере 4 вершины. Внутренняя поверхность таких многоугольников однозначно не определяется.
В евклидовой геометрии описанный четырёхугольник — это выпуклый четырёхугольник, стороны которого являются касательными к одной окружности внутри четырёхугольника. Эта окружность называется вписанной в четырёхугольник. Описанные четырёхугольники являются частным случаем описанных многоугольников.
Антипараллелограмм, или контрпараллелограмм, — плоский четырёхугольник, в котором каждые две противоположные стороны равны между собою, но не параллельны, в отличие от параллелограмма. Длинные противоположные стороны пересекаются между собою в точке, находящейся между их концами; пересекаются между собою и продолжения коротких сторон.
Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов.
Подробнее: Выпуклое метрическое пространство
Теорема котангенсов — тригонометрическая теорема, связывающая радиус вписанной окружности треугольника с длиной его сторон. Теорему котангенсов удобно использовать при решении треугольника по трём сторонам.
В геометрии
японская теорема утверждает, что центры окружностей, вписанных в определённые треугольники внутри вписанного в окружность четырёхугольника, являются вершинами прямоугольника.
Граф многоугольников на окружности можно задать «чередующейся последовательностью». Такую последовательность можно получить разорвав окружность в произвольном месте и перечислив вершины многоугольников, идя вдоль окружности. Такая последовательность единственна.
Теорема Лестера — утверждение в геометрии треугольника, согласно которому в любом разностороннем треугольнике две точки Ферма, центр девяти точек и центр описанной окружности лежат на одной окружности (окружности Лестера). Названа именем канадского математика Джун Лестер (June Lester).
Ребро в геометрии — отрезок, соединяющий две вершины многоугольника или многогранника (в размерностях 3 и выше). В многоугольниках ребро является отрезком, лежащим на границе и чаще называется стороной многоугольника. В трёхмерных многогранниках и в многогранниках большей размерности ребро — это отрезок, общий для двух граней. Отрезок, соединяющий две вершины и проходящий через внутренние или внешние точки, ребром не является и называется диагональю.
Четырёхугольник (греч. τετραγωνον) — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся (см. рис.). Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеется в виду только простые четырёхугольники.
В геометрии политоп (многогранник, многоугольник или замощение, например) изогонален или вершинно транзитивен, если, грубо говоря, все его вершины эквивалентны. Отсюда следует, что все вершины окружены одним и тем же видом граней в том же самом (или обратном) порядке и с теми же самыми углами между соответствующими гранями.
Подробнее: Изогональная фигура
В геометрии центральные прямые — это некоторые специальные прямые, связанные с треугольником и лежащие в плоскости треугольника. Особое свойство, которое отличает прямые как пифагоров триеугольникцентральные прямые проявляется через уравнение прямой в основе фиботаччи трилинейных координатах. Это особое свойство также связано с понятием центр треугольника. Понятие центральной прямой было введено Кларком Кимберлингом в статье, опубликованной в 1994 году.
Подробнее: Центральная прямая
Выпуклым многоугольником называется
многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Выпуклая кривая — кривая на евклидовой плоскости, которая лежит по одну сторону от любой касательной прямой.
Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника). Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон (смотрите рисунок справа, указанные...
Набор окружностей
Джонсона состоит из трёх окружностей одинакового радиуса r, имеющих одну общую точку пересечения H. В такой конфигурации окружности обычно имеют четыре точки пересечения (точки, через которые проходят по меньшей мере две окружности) — это общая точка пересечения H, через которую проходят все три окружности, и по дополнительной точке для каждой пары окружностей (будем о них говорить как о попарных пересечениях). Если любые две окружности не пересекаются (а только лишь касаются) они...
Касательная прямая к окружности в евклидовой геометрии на плоскости — прямая, которая имеет с окружностью ровно одну общую точку. Также можно определить касательную как предельное положение секущей, когда точки пересечения её с окружностью бесконечно сближаются. Касательные прямые к окружностям служат предметом рассмотрения ряда теорем и играют важную роль во многих геометрических построениях и доказательствах.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону).
Прямоугольник — четырехугольник, у которого все углы прямые (равны 90 градусам).
Выпуклый многогранник — частный случай многогранника, пересечение конечного числа замкнутых полупространств.
Гипоцикло́ида (от греческих слов ὑπό — под, внизу и κύκλος — круг, окружность) — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения.
В геометрии конфигурацией
Дезарга называется конфигурация десяти точек и десяти прямых, в которой каждая прямая содержит три точки конфигурации, и через любую точку проходят три прямых. Конфигурация названа в честь Жерара Дезарга и она тесно связана с теоремой Дезарга, которая доказывает существование таких конфигураций.